
www.manaraa.com

View Maintenance Using Conditional Tables?Hua ShuInstitut f�ur InformatikUniversit�at HannoverLange Laube 22, D-30159 Hannover, Germanyhs@informatik.uni-hannover.deAbstract. This paper presents a new approach to maintaining materi-alized views without accessing the underlying base relations. Views canbe made self-maintainable using additional data together with the views.For instance, one can replicate auxiliary views of the base relations atthe site where the views are materialized to ensure self-maintenance ofthe views. However, the previous approaches often lead to the replica-tion of the entire base relations, which is not acceptable from the dataprotection point of view. We propose to represent the base data usingtables with variables and to materialize auxiliary views of such tables inform of conditional tables. Modeling updates of the base data as changesof the assignment to the variables, we can compute the updated views byevaluating the conditional tables with respect to the new assignment ofthe variables. Our approach avoids the replication of the base data andallows active self-maintenance of views triggered by identi�ed updates ofthe base data.1 IntroductionViews are versions of data that are restructured and possibly restricted imagesof a database. Materialized views are physical copies of views that are stored andmaintained. The view maintenance problem is about how to e�ciently update aview that is materialized in response to updates of the base relations. Supposethat there is a view de�ned by a relational algebra expression q over a databaseschema. A state of the view with respect to a set I of base relations is denotedby q(I). Consider an update operation � against I . Let I 0 denote the updatedstate of the base relations. The simplest way to update the view is to computeq(I 0) from scratch. Sometimes it is more e�cient to incrementally maintain theview, i.e. to compute only the changes in the view [6].We are particularly concerned with the situations where the access to the basedata may be slow, expensive or even periodically unavailable, and it is desirableto be able to incrementally maintain views without additional queries over thebase data. Views that can be maintained only based on information about the? This work was supported by Swedish Research Council for Engineering Sciences(TFR) under grant 282-95-966.

www.manaraa.com

views and the updates against the base data, without additional queries over thebase data, are said to be self-maintainable [4].Self-maintainability of views has been recognized as one of the main opti-mization problems in, for instance, data warehouses. At a su�ciently abstractlevel, a data warehouse can be seen as a collection of materialized views over basedata residing at external information sources. An important task of warehousemanagement is to perform materialized view maintenance [10, 12]. In order tointegrate the change of the base data into the warehouse, it may be neededto fetch additional data from the external sources. Issuing such queries to thesources may lead to a processing delay. The queries can be expensive or may notbe permitted at all for security reasons. Thus it is often required to minimizethe additional queries to the external sources.Previous studies have mainly been focus on identifying the class of self-maintainable views. It has been shown that only a very restricted subclass of SPJviews is self-maintainable [11, 3, 5, 6, 10, 12]. Views involving joins, for instance,are generally not self-maintainable in response to insertions into a componentrelation, and are self-maintainable in response to deletions and modi�cationsonly under certain conditions [3, 4].Suppose that views are stored at sites di�erent from where the base relationsare stored. A site where base relations are stored is called base-relation site. Asite where views are stored is called view site. A simple way to achieve self-maintenance of views is to replicate (a subset of) the base relations at view site.However, the cost of replicating large base relations may become prohibitive.Moreover, the replication may not be acceptable for applications where the verypurpose of de�ning views is data protection, i.e. to limit the access to the entirebase relations.Another approach is to materialize auxiliary views of the base relations atview sites [7, 10]. In [7], views are made self-maintainable by storing, at the viewsites, the results of pushing down selections and projections to the base rela-tions. The cost of storing the results is usually lower than the cost of replicatingthe base relations in their entirety. For example, consider a view de�ned by�r1;r3;s1;s2(�E1R 1r2=s1 �E2S), where r1; r2; r3 are some attributes of R, s1; s2are some attributes of S and E1; E2 are selection conditions. The idea is to mate-rialize, at view site, the auxiliary views �r1;r2;r3�E1R and �s1;s2�E2S of the baserelations R and S. These views are smaller than the base relations. Based on thematerialized, auxiliary views, the view �r1;r3;s1;s2(�E1R 1r2=s1 �E2S) can becomputed without access to the base relations. However, when no selections andprojections can be pushed down to the base relations, this approach degeneratesinto the replication of the entire base relations.The updates of the base relations that are relevant to a view are sometimesknown to be restricted to certain part of the base relations. For instance, in apersonnel database, it may be that only the records of the temporarily employedor guests can be removed from the database, and only the �elds of salaries arefrequently modi�ed. It is then desirable to have some active mechanism of viewself-maintenance triggered by such expected updates.

www.manaraa.com

This paper explores an alternative approach to providing auxiliary data whichenable the self-maintenance of materialized views. The general idea of our ap-proach is to represent the base data using tables with variables and to materializeauxiliary views of such tables in form of conditional tables of Imielinski and Lip-ski [8]. Modeling updates of the base data in terms of changes of the assignmentof the variables, we can compute the updated views by evaluating the conditionaltables with respect to the new assignment of the variables. It can be proven thatall views de�ned by relational algebra expressions taken together with the mate-rialized conditional tables are self-maintainable (based on information about theupdates of the base data sent to the view site). This approach avoids the repli-cation of the entire base relations and allows active self-maintenance of viewstriggered by identi�ed updates of the base relations.This paper is organized as follows. First, we present the notion of conditionaltables introduced in [8] with extensions based on the three-valued logic. Thenwe illustrate our approach using an example. In Section 4, we describe the ideasof self-maintaining views with respect to deletions against underlying base data.In Section 5, we extend the approach to cover the cases with respect to deletionsand insertions. In Section 6, we discuss how to handle modi�cations as atomicoperations. Finally, we conclude the paper with a summary and some discussion.2 Conditional TablesA table is a relation with constants and variables. A conditional table is anextension of a table with one more column containing logical formulas attachedwith the tuples of the relation. Table 1 shows an example of conditional tables,where x; y; u; v; t and s are variables. The logical formulas are represented undera column labeled con. con can be seen as a special attribute.De�nition 1. A condition is an expression built up by means of Boolean con-nectives :;^;_ and) from atoms true, false, and equality atoms of the formsx = y and x = c, where x and y are variables and c is a constant. x 6= y (x 6= c)is the abbreviation for :(x = y) (resp. :(x = c)).De�nition 2. A conditional table (or c-table for short) is a pair Tc = (T; �),where{ T is a table,{ � is a mapping over T that associates a condition �(t) with each tuple t ofT . �(t) is called a local condition. A c-tuple is a tuple t of T together withlocal condition �(t), denoted (t; �(t)).When dependency constraints are concerned, an additional kind of condi-tions, called global conditions, needs to be introduced, as proposed in [2]. Forsimplicity, we do not consider dependency constraints and therefore ignore theglobal conditions of conditional tables.

www.manaraa.com

Table 1. A conditional table (c-table)A C cont c x = us c y = ut c' x = vs c' y = vTo interpret information in a c-table is to map it to relation instances by as-signing values to the involved variables. Previously, the interpretation has beendone based on two-valued logic. In this section, we de�ne a three-valued inter-pretation of c-tables.Let V be a �nite set of variables and each variable x in V have an associateddomain, denoted D(x). A valuation over V is a mapping v which maps eachvariable in V to a value in the associated domain. Such a valuation is expressedin form of fx1=a1; x2=a2; :::; xn=ang; where x1; :::; xn is a listing of V and ai =v(xi) 2 D(xi) for each i 2 (1; n).We assume that there is a special value �, called non-existing value, includedin the domain of each variable. Intuitively, the assignment of the non-existingvalue to variable x means that the value of x simply does not exist. It is intro-duced to model the updates (deletions, insertions and modi�cations). It is alsoassumed that the domain of each attribute does not contain the non-existingvalue.The evaluation of conditions is based on the strong Kleene logic [9]. Wedenote the evaluation of a condition C with respect to a valuation v by V v(C).With respect to valuation v, C can be satis�ed (denoted V v(C) = T), falsi�ed(denoted V v(C) = F) or unde�ned (denoted V v(C) = U). The evaluation of acondition is de�ned recursively as follows:1. true is always evaluated T and false always F .2. For an equality atom x = y, V v(x = y) = U if v(x) = � or v(y) = �. V v(x =y) = T if v(x) 6= �, v(y) 6= � and v(x) = v(y). Otherwise, V v(x = y) = F .3. V v(:p) = :V v(p), V v(p ^ q) = V v(p) ^ V v(q) and V v(p _ q) = V v(p) _V v(q), where the connectives :;^ and _ on the right-hand sides of the aboveequations are de�ned by the well-known truth tables of the strong Kleenelogic shown in Table 2.We say that two conditions C1 and C2 are equivalent i� V v(C1) = V v(C2) forany valuation v. In c-tables, conditions equivalent to true are simply omitted.If all local conditions in a c-table are true, then the con column can be omitted.Now we de�ne the result of evaluating c-table Tc = (T; �) with respect tovaluation v, denoted v(Tc), as follows:v(Tc) = fv(t) j t 2 T , V v(�(t)) = T and v(x) 6= � for any x 2 tg; (1)

www.manaraa.com

Table 2. The truth tables of the connectives :;^ and _p :pT FF TU U ^ T F UT T F UF F F FU U F U _ T F UT T T TF T F UU T U Uwhere v(t) is the result of evaluating each value in tuple t with respect to v. Sov(Tc) contains all such v(t) that t 2 T , v satis�es the local condition �(t) andv(t) does not contain the non-existing value.We call v(t) the instance of the c-tuple (t; �(t)) with respect to v and c-tuple(t; �(t)) the abstraction of v(t). v(Tc) is called the instance of Tc with respect tov. Given a database Ic with a number of c-tables, the instance of Ic with respectto v is de�ned as: v(Ic) = fv(Tc) j Tc 2 Icg:For example, the instance of the c-table shown in Figure 1 with respect tothe valuation fx=a; y=a; u=b; v=a; t=d; s=dg is the relation with one tuple (d; c0).Tuple (d; c0) is the instance of c-tuples (t; c0; x = v) and (s; c0; y = v). In otherwords, both c-tuples (t; c0; x = v) and (s; c0; y = v) are the abstractions of tuple(d; c0).The set of relation instances represented by c-table Tc = (T; �) is de�ned asfollows: rep(Tc) = fv(Tc) j for any valuation vg: (2)For a database Ic = (T1; :::; Tn), rep(Ic) = rep(T1)� :::� rep(Tn):For two c-tables T1 and T2, they are said to be rep-equivalent if rep(T1) =rep(T2). Given a c-table Tc, if we (a) replace each of the conditions in Tc by anequivalent one, (b) delete all t 2 Tc such that �(t) is equivalent to false, and (c)replace some t1; :::; tk 2 Tc such that t1[X] = ::: = tk[X], where X is the set ofattributes in Tc, by a single tuple t such that t[X] = t1[X] and �(t) = _ki=1�(ti),then the resulting c-table will be rep-equivalent to Tc [8]. If the resulting c-tabledoes not contain di�erent c-tuples agreeing on all the attributes of Tc, then itis said to be normalized [8]. The result of normalizing a c-table Tc is denotedby (Tc)0. Basically, the normalization process eliminates redundant c-tuples andunite c-tuples without loss of useful information.Suppose that c-tables T and W are given, which are de�ned on sets X andZ of attributes, respectively. The de�nitions of some relational operators onc-tables are as follows (see [8] for the de�nitions of the other operators):{ The projection of T on a set Y of attributes (Y � X) is de�ned by�Y (T) = ft[Y [fcong] j t 2 Tg0:{ The natural join of T and W is de�ned byT 1 W = ft 1 w j t 2 T ^ w 2Wg0;

www.manaraa.com

where t 1 w is the c-tuple on X [Z such that(t 1 w)(A) = � t(A) if A 2 Xw(A) if A 2 Z �X(t 1 w)(con) = t(con) ^ w(con) ^ ^A2X\Z(t(A) = w(A)):{ Given selection condition E, the selection of T based on E is de�ned by�E(T) = f�E(t) j t 2 Tg0;where �E(t) is the c-tuple on X with�E(t)[X] = t[X];�E(t)(con) = t(con) ^ E(t):E(t) is the result of substituting t(A) for A in E, for every A 2 X .The above de�nitions of the operations on a single c-table generalize straight-forward to the de�nitions of the operations on a set of c-tables.Let q(Ic) be a view of Ic de�ned by relational algebra expression q. It hasbeen proven (Theorem 7.1 in [8]) thatv(q(Ic)) = q(v(Ic)) (3)holds for any valuation v of the variables in Ic. Based on (3), it can be proved thatthe answers to all relational queries on a database of c-tables can be representedusing c-tables [8]. Note that although the non-existing value is not considered in[8], the above result still applies because it does not a�ect the de�nitions of therelational operators.Let < be a binary relation on the set fT; F; Ug satisfyingU < T; U < F: (4)v stands for \< or =". The ordering v is reexive and transitive. The structurehfT; F; Ug;vi is called the approximation lattice [1]. We extend the relation vto de�ne an ordering over the domain of a variable. For any variable x, v is abinary relation over D(x) such that for any value a,� v a: (5)� < a stands for \� v a and � 6= a". Further, we extend the relation v to de�nethe degree-of-de�nedness ordering between valuations. For any valuations v andv0, v v v0 i� v(x) v v0(x) for each variable x: (6)v < v0 means that v v v0 and v 6= v0. v v v0 implies that whenever v0 and vassign di�erent values to the same variable, it must be that v0 assigns � to thevariable.

www.manaraa.com

A propositional language is said to be persistent if for any valuations v andv0, and formula C in the language, if v v v0, then V v(C) v V v0(C). The strongKleene logic is the strongest extension of the classical two-valued logic satisfyingthe persistence condition [9]. Thus, for any valuations v and v0, and conditionC, if v v v0, then V v(C) v V v0(C). The following proposition follows directlyfrom the property.Proposition3. For any valuations v and v0, and c-table Tc, if v v v0, thenv(Tc) � v0(Tc).3 An Illustrative ExampleIn this section, we illustrate our approach by example. We discuss only self-maintenance of views in response to deletions and insertions against the baserelations. Consider database (T1; T2) at base-relation site and materialized view�B(T1 1B=C T2) at view site, as shown in Table 3.To make the view self-maintainable with respect to the deletions against thebase relations, we carry out the following steps:1. At the base-relation site, we generate tables by replacing the values of certainattributes in the base relations using variables, namely those attributes thatparticipate in the de�nition of the view. For each base relation, it is onlynecessary to identify the values of one such a attribute. The result of thisprocess, (T v1 ; T v2), is called a D-version of database (T1; T2) and shown inTable 4. The values of attribute B, for instance, are identi�ed by three vari-ables y1; y2 and y3, respectively. Let the values of the variables with respectto T1 and T2 be kept in a valuation v = fy1=b; y2=b; y3=e; z1=a; z2=eg:2. At the view site, we store an additional relation called the conditioned versionof the materialized view (or the conditioned view for short), shown in Table 5.The conditioned view is a subset of the C-table �B(T v1 1B=C T v2) shown inTable 6. The c-tables are normalized. The relation between the materializedview and the conditioned view is that the conditioned view contains and onlycontains the abstractions of all the tuples in the materialized view; the tuplesin the materialized view are instances of the c-tuples in the conditioned viewwith respect to the valuation v. For instance, the tuple (e) in the materializedview is the instance of c-tuple (y3; (y3 = z1)_ (y3 = z2)) with respect to thevaluation v.Note that if we store the D-version of the database and the valuation v, thedatabase can be computed by T1 = v(T v1) and T2 = v(T v2). Similarly, if we storethe conditioned view and the valuation v, the current state of the view can becomputed by evaluating the conditioned view using the valuation v. Thus thenew tables at the base-relation and the view sites enable us to compute the baserelations and the view whenever needed.Now let us see how the materialized view can be maintained with respectto deletions against the base relations. Suppose that the tuple (d; e) in the base

www.manaraa.com

relation T1 is deleted. The purpose of introducing variables to the base relationsis to make it possible to model each deletion operation against the base relationsas a change of the valuation of the variables. The deletion of tuple (d; e) againstT1 can be captured as the change of the value for variable y3 in T v1 to the non-existing value. Thus a change of the valuation of the variables y3 to the non-existing value is made. The new valuation is v1 = fy1=b; y2=b; y3=�; z1=a; z2=eg:Suppose that we send the information about the update against the baserelations to the view site by sending the new valuation (or the di�erence betweenthe old and the new ones if the old valuation is already stored at the viewsite). Based on the relation between the materialized view and the conditionedview, it is easy to see that the tuples to be deleted from the materialized viewcan be obtained by evaluating the conditioned view with respect to the newvaluation v1. Since y3 is assigned the non-existing value, the condition (y3 =z1) _ (y3 = z2) can no longer be satis�ed. The tuple (e) should be deleted fromthe materialized view. The evaluation can be done without additional queriesover the base relations. Correspondingly, the c-tuple (y3; (y3 = z1) _ (y3 = z2))is deleted from the conditioned view. This way, the view taken together with theconditioned view is self-maintained with respect to the deletion.Table 3. Base data and viewT1A Ba bc bd e T2C Da de aBase Relations �B(T1 1B=C T2)BeView
Table 4. D-versionT v1A Ba y1c y2d y3 T v2C Dz1 dz2 a

Table 5. Conditioned viewB cony3 (y3 = z1) _ (y3 = z2) Table 6. �B(T v1 1B=C T v2)B cony1 (y1 = z1) _ (y1 = z2)y2 (y2 = z1) _ (y2 = z2)y3 (y3 = z1) _ (y3 = z2)Now we consider how the view can be made self-maintainable with respectto insertions against the base relations. Suppose that insertions are expectedagainst both of the base relations T1 and T2. We carry out the following stepsin addition to the previous ones:

www.manaraa.com

3 At the base-relation site, we extend the D-version (T v1 ; T v2) of the databaseby adding free tuples containing only variables. Let the free tuples be tv1 =(n1; n2) and tv2 = (n3; n4). The resulting database, (T v1 [ftv1g; T v2 [ftv2g)(shown in Table 7), is called the DI-version of (T1; T2). Let the values of thevariables with respect to T1 and T2 still be kept in the valuation v.4 At the view site, in addition to the conditioned view, we store another re-lation, called the insert set of the view. The insert set, shown in Table 8,is de�ned as the di�erence between �B((T v1 [ftv1g) 1B=C (T v2 [ftv2g)) and�B(T v1 1B=C T v2), which is equivalent to �B(ftv1g 1B=C T v2 [T v1 1B=Cftv2g [ftv1g 1B=C ftv2g).Suppose that tuple (b; a) is inserted into T1. The purpose of de�ning the DI-version of the database is to introduce variables in such a way that it is possibleto model insertions against the base relations in terms of changes of the valuationof the variables in the free tuples2. The insertion of tuple (b; a) into T1 can bemodeled as assigning b to variable n1, a to variable n2 and � to n3 and n4, givingrise to the valuation vi = fy1=b; y2=b; y3=e; z1=a; z2=e; n1=b; n2=a; n3=�; n4=�g:Suppose that vi is sent to the view site as information about the updateagainst the base relation. Now the set of new tuples to be inserted into thematerialized view can be computed as the instance of the insert set with respectto the valuation vi. The outcome of the computation is the tuple (a), which isthe instance of the c-tuple (n2; n2 = z1) in the insert set with respect to v [vi.The updated view is shown in Table 9.Corresponding to a tuple inserted into a base relation, a new tuple needs tobe inserted into the DI-version of the base relation. According to the de�nitionof a DI-version of the database, all the values of attribute B in T1 are to beidenti�ed by variables. Thus a new variable needs to be introduced to identifythe value of attribute B (which is a) in the tuple (b; a) inserted into T1. Let usassume that y4 be the new variable. The new tuple to be inserted into T v1 is(b; y4). The information about the mapping from the value of attribute B in theinserted tuple to variable y4 should also be sent to the view site.The conditioned view and the insert set can be incrementally self-maintainedin response to both deletions and insertions against the base relations. We havealready shown how the conditioned view is maintained with respect to deletionsagainst the base relations. In response to insertions into the base relations, newc-tuples have to be inserted into the conditioned view when new tuples areinserted into the materialized view. The insertion of (a) into the materializedview implies that (n2; n2 = z1) should be inserted into the conditioned view.Note that n2 is in fact a place holder for the new variable y4. The new c-tupleinserted into the conditioned view should be (y4; y4 = z1). The resulting relationsare shown in Table 9. We leave the detail of updating the insert set to Section 5.Here we only mention the results. In response to the deletion of tuple (d; e) fromT1, the tuple (y3; y3 = n3) should be deleted from the insert set. The updated2 Deletions can be modeled as before; in addition, all the variables in the free tuplesare given the value �.

www.manaraa.com

insert set is shown in Table 10. In response to an insertion, new tuples should beinserted into the insert set. For the insertion of (b; a) into T1, tuple (y4; y4 = n3)is inserted into the insert set. The updated insert set is shown in Table 11.Table 7. DI-version(T v1 [ftv1g; T v2 [ftv2g) of (T1; T2)T v1 [ftv1gA Ba y1c y2d y3tv1 n1 n2 T v2 [ftv2gC Dz1 dz2 atv2 n3 n4
Table 8. The insert setB conn2 n2 = z1n2 n2 = z2n2 n2 = n3y1 y1 = n3y2 y2 = n3y3 y3 = n3

Table 9. The updated view and its conditioned versionThe updated viewBea Conditioned version of the updated viewB cony3 (y3 = z1) _ (y3 = z2)y4 y4 = z1
4 Self-Maintenance of Views w.r.t. DeletionsIn this section, we describe the self-maintenance of views in response to deletionsagainst the base relations in more rigorous terms. We consider views de�ned byrelational algebra expressions in this and the following sections.Let us review some notions adopted from [5]. A view can be de�ned using arelational expression, which can be transformed into an equivalent select-from-where expression. An attribute A is said to be distinguished in a view de�nedby a select-from-where expression if attribute A appears in the set of attributesspeci�ed by the select clause. An attribute A is said to be exposed in a viewde�ned by a select-from-where expression if A is used in the selection conditionspeci�ed by the where clause. The union of the distinguished and exposed at-tributes is called the extended attribute set of the view. Essentially, only changesof the attributes in the extended attribute set of a view possibly a�ect the stateof the view. For example, consider relation R(A;B;C) and R0(C) and a viewde�ned by �A(R 1 R0). Attributes A and C are in the extended attribute set of

www.manaraa.com

Table 10. The updated insert setin response to deletion of (d; e)from T1 B conn2 n2 = z1n2 n2 = z2n2 n2 = n3y1 y1 = n3y2 y2 = n3
Table 11. The updated insert setin response to insertion of (b; a)into T1 B conn2 n2 = z1n2 n2 = z2n2 n2 = n3y1 y1 = n3y2 y2 = n3y3 y3 = n3y4 y4 = n3the view; attribute A is distinguished, while C is exposed in the join. AttributeB is said to be irrelevant to the view, as it is not mentioned at all in the viewde�nition.For each base relation T 2 I de�ned on a set X of attributes and a view qde�ned over I , if some tuples are expected to be deleted from T , then we chooseone (and at most one) exposed attribute A 2 X of the view, replace the valuesof A in the relation T with distinct variables and put on the side the valuationof the variables. The resulting set of tables after variables are introduced in thisway is called a D-version of the database I with respect to q. For a D-version ofthe given database, let v be the valuation that maps the introduced variables tothe replaced values. Then v(Id) = I and v(q(Id)) = q(v(Id)) = q(I). v is calledthe valuation of the variables in Id with respect to I .Consider the database (T1; T2) and the view �B(T1 1B=C T2) shown inTable 3. Attributes B and C are exposed in the view. To generate a D-version ofthe database, we introduce variables to replace values of the exposed attributeB in T1 and C in T2. The resulting tables are T v1 and T v2 shown in Table 4. Thevaluation of the variables is de�ned in v.As mentioned earlier, the purpose of generating a D-version of a databasewith respect to a view is to make it possible to model each deletion operationagainst the base relations as a change of the valuation of the variables.Lemma4. Let Id be a D-version of database I with respect to a view of I andthe valuation of the variables in Id with respect to I be v. For the deletion of atuple t from I, there is a valuation v0 such that v0(Id) = I � ftg; and v0 v v:Proof. Let t be any tuple in a base relation in I and tc be the correspondingc-tuple in Id. Then td must be the result of replacing the value of an exposedattribute in t with a variable x. Let v0 be such a valuation that v0(x) = � andfor all other variables y, v0(y) = v(y). Then v0(Id) = I � ftg and v0 v v. Thisconcludes the proof.De�nition 5. Let Id be a D-version of database I with respect to view q andv denote the valuation of the variables in Id with respect to I . The conditioned

www.manaraa.com

version of view q(I) with respect to Id, denoted Td, is de�ned as:Td = f(t; �(t))) j (t; �(t)) 2 q(Id); V v(�(t)) = T and v(x) 6= � for any x 2 tg:By de�nition, Td � q(Id) and v(Td) = v(q(Id)). Since v is the valuation of thevariables in Id with respect to I , q(I) = v(q(Id)) must hold. Because v(Td) =v(q(Id)), it must be that q(I) = v(Td). That is to say, the view q(I) is theinstance of the conditioned version Td with respect to v.Before stating the theorem about the self-maintainability of the views inresponse to deletions, we prove another lemma.Lemma6. Let Id be a D-version of database I with respect to view q, Td be theconditioned version of the view q(I) with respect to Id, and the valuation of thevariables in Id with respect to I be v, i.e. v(Id) = I. Thenv0(Td) = v0(q(Id)) (7)holds for any valuation v0 of the variables in Id such that v0 v v.Proof. By de�nition of Td, Td � q(Id). For any valuation v0 v v, according toProposition 3, v0(q(Id) � Td) � v(q(Id)� Td) holds. Again, by de�nition of Td,v(Td) = v(q(Id)), i.e. v(q(Id)� Td) = ;. On the other hand, since Td � q(Id), itmust be that ; � v0(q(Id)�Td). That is, ; � v0(q(Id)�Td) � v(q(Id)�Td) = ;:It follows immediately that v0(q(Id)�Td) = ;. Consequently, v0(q(Id)) = v0(Td[(q(Id)� Td)) = v0(Td) [v0(q(Id)� Td) = v0(Td): This concludes the proof.Now we are ready to prove that in response to deletions of the base relations,materialized views de�ned by relational algebra expressions are self-maintainableby means of the conditioned versions of the views. Basically, the updated stateof a view can be computed by evaluating the conditioned version of the view.Theorem7. Let Id be a D-version of database I in response to a view q, v bethe valuation of the variables in Id with respect to I, and Td be the conditionedversion of the view with respect to Id. The view, taken together with Td, is self-maintainable in response to deletions against I.Proof. First, we prove that for the deletion of a tuple t from I , q(I�ftg) = v0(Td)for some valuation v0 v v. According to Lemma 4, there must be some valuationv0 of the variables in Ic such that v0(Id) = I�ftg and v0 v v: According to (3),it follows that v0(q(Id)) = q(v0(Id)) = q(I � ftg). That is to say, the updatedview q(I � ftg) is equivalent to v0(q(Id)). Let Td be the conditioned version ofthe view with respect to Id. According to Lemma 6, v0(q(Id)) = v0(Td): Thuswe have v0(Td) = q(I � ftg): Note that q(I � ftg) is the updated state of theview. Since Td is materialized, according to the above theorem, we can computethe update view without access to the base relations. The conditioned versionTd can be updated by deleting all the c-tuples where the local conditions arenot satis�ed by v0. We can conclude that the view, taken together with theconditioned version Td of the view with respect to Id, is self-maintainable inresponse to deletions against I . This concludes the proof.

www.manaraa.com

Let us review relations T1, T2 and the view de�ed by �B(T1 1B=C T2)shown in Table 3. Suppose that tuple (c; b) is deleted from T1. This deletioncan be modeled as the modi�cation of the valuation of y2 from b (accord-ing to v) to the non-existing value �. The new valuation of the variables isv2 = fy1=b; y2=�; y3=e; z1=b; z2=eg: The result of evaluating the c-table shownin Table 5 using v2 is the updated state of the view. In this case, the updatedstate of the view is the same as the old state of the view. So the deletion has noimpact on the state of the view.5 Self-Maintenance of Views w.r.t. Deletions andInsertionsIn this section, we describe the self-maintenance of views de�ned by relationalalgebra expressions in response to deletions and insertions against the base re-lations.For a database I and view q on I , if both deletions and insertions are ex-pected, then we �rst generate a D-version of I with respect to view q, denoted Id.Note that there is a one-to-one mapping from the relations in I to the relationsin Id. For each relation T in I , if some tuples are expected to be inserted, thenwe add a free tuple with only distinct variables to the corresponding relationof T in Id. The variables in the free tuple are distinct from all those alreadyused. The resulting database Idi is called the DI-version of the database I withrespect to q.The purpose of de�ning the DI-version of the database is to introduce vari-ables in such a way that it is possible to model not only deletions, but alsoinsertions against the base relations as changes of the valuation of the variables.Deletions can be modeled by changing the assignments of some variables to thenon-existing value, as indicated in the proof of Lemma 4. Insertions can be mod-eled by assigning values to the variables in the free tuples. Recall the exampledatabase (T1; T2) shown in Table 3 and the DI-version of the database shown inTable 7. The insertion of tuple (b; a) into T1 can be modeled by assigning b tovariable n1 and a to variable n2. Thus we have the following lemma. The proofis trivial and is omitted.Lemma8. Let Id be a D-version of database I with respect to a view of I and Idibe the corresponding DI-version of database I. Let the valuation of the variablesin Id with respect to I be v. For the insertion of a tuple t into I, there is avaluation vi such that vi(Idi) = I [ftg; and vi(Id) = v(Id) = I:Now we de�ne the notion of insert set.De�nition 9. Let Id be a D-version of database I with respect to view q andIdi be the DI-version of database I with respect to the same view. q(Idi)� q(Id)is called the insert set of the view.

www.manaraa.com

The insert set of the view is the auxiliary data to be materialized in order toself-maintain the view.Now we shall prove that a view is self-maintainable in response to deletionsand insertions based on the conditioned version of the view and the insert setof the view. The assumption is that some information about the updates of thedata at the base-relation site is sent to the view site.Theorem10. A view q of a database I, taken together with the conditionedversion of the view and the insert set of the view, is self-maintainable in responseto deletions and insertions against I.Proof. We need to prove that 1) the view can be self-maintained in responseto deletions and insertions against the base relations based on the conditionedversion of the view and the insert set of the view, and 2) both the conditionedversion of the view and the insert set of the view are self-maintainable.We start with 1). For deletions, the proof is similar to that of Theorem 7. Theupdated state of the view can be computed by an evaluation of the conditionedversion of the view. Now we consider insertions. Let Id be a D-version of I withrespect to the view q and Idi be a DI-version of I . Then q(Idi) � q(Id) is theinsert set of the view. Suppose that t is inserted into I . According to Lemma 8,there is a valuation vi such that vi(Idi) = I [ftg; and vi(Id) = v(Id) = I: Thusvi(q(Idi)� q(Id)) = q(vi(Idi))� q(vi(Id)) = q(I [ftg)� q(I):That is to say, the set of tuples to be inserted into the view is the result ofevaluating the insert set by vi. Both the insert set and the valuation vi areavailable independent of the base relations. We can conclude that the view isself-maintainable in response to insertions against the base relations.Now we consider 2). In the previous section, we have described how theconditioned view can be maintained in response to deletions against the baserelations. In response to insertions, new c-tuples may be inserted into the condi-tioned view. Let Id denote the old D-version, Idi denote the old DI-version andI 0d the new D-version after the insertions. I 0d can be obtained by �rst replacingthe free tuples in Idi with the inserted tuples, and then replacing the values inthe inserted tuples with new variables (in order to satisfy the requirement forthe D-version). Let r1 be such a mapping from the variables in the free tuplesin Idi to the new variables in I 0d that I 0d = r1(Idi) and r1(Id) = Id. Assume thatr1 is sent to the view site as information about the insertions into the base rela-tions. For a view q, q(I 0d)� q(Id) = q(r1(Idi))� q(Id) = r1(q(Idi)� q(Id)), whereq(Idi) � q(Id) is the insert set before updates. Let Tci be the set of c-tuples inthe old insert set where the associated local conditions are satis�ed by vi. Thenaccording to the de�nition of the conditioned view, the set of c-tuples to beinserted into the conditioned view is r1(Tci), which can be computed based onthe available information at the view site.Next we show how to maintain the insert set in response to deletions andinsertions against the base relations. For simplicity, we consider only a databasewith two relations T1 and T2, and a view �X (�E(T1 1 T2)), where X is a subset

www.manaraa.com

of attributes of T1 and T2, and E is a selection condition. The cases with multiplerelations can be proved easily by induction. Let �T1 and �T2 denote the sets oftuples inserted into T1 and T2. Assume that (T v1 ; T v2) is a D-version of (T1; T2).Let r2 denote the mapping from the values in �T1 and �T2 to the variables inthe updated D-version. Assume that r2, �T1 and �T2 are sent to the view siteas the information about the insertions against the base relations. The old insertset before the insertions is:Sold = �X(�E((T v1 [ftv1g) 1 (T v2 [ftv2g))� �X (�E(T v1 1 T v2))) =�X(�E(ftv1g 1 T v2 [T v1 1 ftv2g [ftv1g 1 ftv2g)):The new insert set after the insertions is:Snew = �X (�E((T v1 [r2(�T1) [ftv1g) 1 (T v2 [r2(�T2) [ftv2g))��X (�E((T v1 [r2(�T1)) 1 (T v2 [r2(�T2)))) =�X (�E(ftv1g 1 (T v2 [r2(�T2)) [(T v1 [r2(�T1)) 1 ftv2g [ftv1g 1 ftv2g)):Then the set of new tuples to be inserted into the insert set, which is the di�er-ence between the new insert set and the old insert set, is:Snew � Sold = �X (�E(ftv1g 1 r2(�T2) [r2(�T1) 1 ftv2g)):Since tv1 and tv2 are available at the view site, the above set can be computedwithout access to the base relations. When deletions against the base relationsare considered, it can be derived that the above set is precisely the set of tuples tobe deleted from the insert set. That is to say, the insert set can be self-maintainedin response to deletions and insertions. This concludes the proof of the theorem.6 Modi�cations as Atomic OperationsIf modi�cations are handled as deletions followed by insertions, then Theorem 10is su�cient to guarantee that the views can be self-maintained in response tomodi�cations against the base data. In this section, we discuss hoe to handlemodi�cations as atomic operations.Suppose that we are given a database I of base relations. For each baserelation, if there are some values that are expected to be modi�ed, then wereplace the values with distinct variables and put on the side the valuation ofthe variables. Recall that only modi�cations of the values of the attributes inthe attribute set of a view are relevant to the view. So we only need to introducevariables to identify values of the attributes in the extended attribute set. LetIm denote the resulting set of tables after variables are introduced as describedabove. Im is called a M-version of the database I with respect to the view. Letv denote the valuation of the variables in Im with respect to I . Then I is theinstance of Im with respect to v, i.e. v(Im) = I .The M-version of the example database (T1; T2) with respect to view �B(T1 1B=CT2), shown in Figure 3, coincides with the D-version of the database with respect

www.manaraa.com

to the view. Generally, rep(Id) � rep(Im). Thus the M-version of a database canreplace the D-version of the database.The purpose of generating the M-version of a database with respect to aview is to make it possible to model each modi�cation operation against thebase relations as a change of the valuation of the variables.Lemma11. Let Im be a M-version of database I with respect to a view of I andthe valuation of the variables in Im with respect to I be v. For the modi�cationof a tuple t in I to t0, there is a valuation v0 such that v0(Im) = (I �ftg)[ft0g:Proof. Let tc be the corresponding c-tuple to t in Im. Then tc must be the resultof replacing the values of attributes expected to be modi�ed in t with variables.Let v0 be such a valuation that v0(tc) = t0 and for the any other c-tuple t0c 2 Im,v0(t0m) = v(t0c). Then it is easy to see that v0(Im) = (I � ftg) [ft0g.To model insertions against the base relations, we can add free tuples to Imand generate a MI-version of the database.As before, we could de�ne a subset Tm of q(Im) as the conditioned version ofview q(I) with respect to Im by Tm = f(t; �(t))) j (t; �(t)) 2 q(Im); V v(�(t)) =T and v(x) 6= � for any x 2 tg: Now the question is whether we can provesomething similar to Theorem 7, namely that a view q, taken together with theconditioned version Tm, is self-maintainable in response to modi�cations againstI . Unfortunately, it is not possible because, di�erent from Lemma 4, Lemma 11cannot guarantee v0 v v; and consequently not v0(Tm) = v0(q(Im)) either.Thus instead of materializing the conditioned version Tm of the view, we haveto materialize q(Im) for the self-maintenance of the view. For instance, considerthe modi�cation of tuple (e; a) in T2 (in the example database) to tuple (b; a).This amounts to change the valuation of variable z2 from e to b. Evaluating theconditioned version of the view using the new valuation of the variables leadsto an empty state, while the state of the updated view contains one tuple (b).On the other hand, evaluating the auxiliary view �B(T v1 1B=C T v2) shown inTable 6 results exactly in the state of the updated view.We prove the self-maintenance of a view taken together with the M-version.Due to space limit, we consider only modi�cations.Theorem12. Let Im be a M-version of database I with respect to a view q.The view, taken together with the auxiliary view q(Im), is self-maintainable inresponse to modi�cations against I.Proof. Consider the modi�cation of a tuple t from some base relation in I totuple t0. According to Lemma 11, there must be some valuation v0 of the variablesin Ic such that v0(Im) = (I � ftg) [ft0g: (8)It follows from (8) and the property (3) thatv0(q(Im)) = q(v0(Im)) = q((I � ftg) [ft0g): (9)

www.manaraa.com

That is to say, the updated view q((I � ftg) [ft0g) is equivalent to v0(q(Im)).Since q(Im) is materialized, we can compute the updated view without access tothe base relations. The auxiliary view de�nition remains unchanged in responseto the modi�cation. This way, we achieve the goal of making the view self-maintainable in response to modi�cations of the identi�ed values.7 Conclusion and DiscussionWe have presented a new approach to maintaining materialized views withoutaccessing the underlying base relations. The basic idea is to to represent thebase data using tables with variables and to materialize auxiliary data in formof conditional tables.In order to make a materialized view self-maintainable in response to dele-tions against the base data, a D-version of the base data is generated at thebase-relation site and a conditioned version of the view (which is a subset of theview over the D-version) is materialized at the view site. A deletion against thebase data can be modeled as changes of the assignment to the variables in theD-version. The updated view can be computed by evaluating the conditionedversion of the view with respect to the new assignment of the variables.In order to make a materialized view self-maintainable in response to dele-tions and insertions against the base data, a DI-version of the base data is gen-erated at the base-relation site. An insert set is materialized at the view site, inaddition to the conditioned version of the view. An insertion into the base datacan be modeled as changes of the assignment to the variables in the DI-version.The set of new tuples to be inserted into the materialized view can be computedby evaluating the insert set with respect to the new assignment of the variables.Modi�cations against the base data can either be handled as deletions fol-lowed by insertions, or as atomic operations. In the latter case, a M-version of thebase data is generated at the base-relation site and an auxiliary view of the M-version is materialized at the view site. A modi�cation against the base data canbe modeled as changes of the assignment to the variables in the M-version. Theupdated view can be computed by evaluating the auxiliary view with respect tothe new assignment of the variables. We have also shown that the auxiliary datamaterialized at the view site are self-maintainable with respect to the updatesagainst the base data.This approach has two main advantages over the previous ones. First of all,it avoids the replication of the entire base relations. Secondly, It allows activeself-maintenance of views triggered by expected updates of the base relations(by means of the introduction of variables).Those advantages come at the price of storing and maintaining auxiliarydata at the view site. The size of the auxiliary data varies with the complexityof the materialized view. The size of the conditioned view is linear to the size ofthe materialized view. Thus materializing the conditioned view does not lead tosigni�cant increase of the space complexity. When a view is de�ned upon a joinof m base relations with the maximal size of n tuples, the size of the c-tables

www.manaraa.com

representing the insert set and the auxiliary view q(Im) (where Im is the M-version of the database) can be exponential to the number of joined base relationsin the materialized view. That implies, this approach is less expensive whenhandling deletions against the base data, and handling modi�cations as atomicoperations using the current approach may need more space for materializingthe auxiliary data than handling them as deletions followed by insertions.Acknowledgments Thanks are due to Prof. Udo Lipeck and the anonymousreferees for many helpful comments.References1. S. Blamey. Partial logic. In Handbook of Philosophical Logic, volume III, pages1{70. D. Reidel, 1986.2. G. Grahne. The problem of incomplete information in relational databases.Springer-Verlag, 1991.3. A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable views. Technical Report 223880-941101-32, AT&T Bell Laboratories,November 1994.4. A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable views. In P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Ad-vances in Database Technology { EDBT'96, 5th International Conference on Ex-tending Database Technology, LNCS 1057, pages 140{144, Berlin, 1996. Springer-Verlag.5. Ahishs Gupta and Inderpal Singh Mumick. Maintenance of materialized views:Problems, techniques, and applications. Data Engineering, 18(2):3{18, June 1995.6. Ashish Gupta, Inderpal Singh Mumick, and V.S. Subrahmanian. Maintainingviews incrementally. In Peter Buneman and Jajodia Sushil, editors, Proceedingsof the 1993 ACM SIGMOD International Conference on Management of Data,number 2 in SIGMOD Record, pages 157{166, New York, 1993. ACM Press.7. R. Hull and G. Zhou. A framework of supporting data integration using the mate-rialized and virtual approaches. In H.V. Jagadish, T.H. Merrett, and I.S. Mumick,editors, Proceedings of the 1996 ACM SIGMOD International Conference on Man-agement of Data, Montreal, June 4-6, 1996, number 2 in SIGMOD Record, pages481{492, New York, June 1996. ACM Press.8. Tomasz Imielinski and Witold Jr. Lipski. Incomplete information in relationaldatabases. Journal of the ACM, 31(4):761{791, October 1984.9. S. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, 1952.10. D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-maintainable for data warehousing. In Fourth International Conferenceon Parallel and Distributed Information Systems, Dec. 18-20, 1996, Mi-ami Beach, pages 158{169, Br�ussel, 1996. IEEE Computer Society Press.http://www.research.att.com/ mumick/projects/matViews.html.11. F. W. Tompa and J. A. Blakeley. Maintaining materialized views without access-ing base data. Information Systems, 13(4):393{406, 1988.12. Jennifer Widom. Research problems in data warehousing. In N. Pissinou,A. Silberschatz, E. K. Park, and K. Makki, editors, Proc. of the 4th Int'l Confer-ence on Information and Knowledge Management (CIKM'95). ACM Press, Novem-ber 1995. http://pub-db.stanford.edu/publist.html.

