View Maintenance Using Conditional Tables*

Hua Shu

Institut fiir Informatik
Universitat Hannover
Lange Laube 22, D-30159 Hannover, Germany
hs@informatik.uni-hannover.de

Abstract. This paper presents a new approach to maintaining materi-
alized views without accessing the underlying base relations. Views can
be made self-maintainable using additional data together with the views.
For instance, one can replicate auxiliary views of the base relations at
the site where the views are materialized to ensure self-maintenance of
the views. However, the previous approaches often lead to the replica-
tion of the entire base relations, which is not acceptable from the data
protection point of view. We propose to represent the base data using
tables with wariables and to materialize auxiliary views of such tables in
form of conditional tables. Modeling updates of the base data as changes
of the assignment to the variables, we can compute the updated views by
evaluating the conditional tables with respect to the new assignment of
the variables. Our approach avoids the replication of the base data and
allows active self-maintenance of views triggered by identified updates of
the base data.

1 Introduction

Views are versions of data that are restructured and possibly restricted images
of a database. Materialized views are physical copies of views that are stored and
maintained. The view maintenance problem is about how to efficiently update a
view that is materialized in response to updates of the base relations. Suppose
that there is a view defined by a relational algebra expression g over a database
schema. A state of the view with respect to a set I of base relations is denoted
by ¢(I). Consider an update operation p against I. Let I' denote the updated
state of the base relations. The simplest way to update the view is to compute
g(I') from scratch. Sometimes it is more efficient to incrementally maintain the
view, i.e. to compute only the changes in the view [6].

We are particularly concerned with the situations where the access to the base
data may be slow, expensive or even periodically unavailable, and it is desirable
to be able to incrementally maintain views without additional queries over the
base data. Views that can be maintained only based on information about the

* This work was supported by Swedish Research Council for Engineering Sciences
(TFR) under grant 282-95-966.

www.manaraa.com

views and the updates against the base data, without additional queries over the
base data, are said to be self-maintainable [4].

Self-maintainability of views has been recognized as one of the main opti-
mization problems in, for instance, data warehouses. At a sufficiently abstract
level, a data warehouse can be seen as a collection of materialized views over base
data residing at external information sources. An important task of warehouse
management is to perform materialized view maintenance [10, 12]. In order to
integrate the change of the base data into the warehouse, it may be needed
to fetch additional data from the external sources. Issuing such queries to the
sources may lead to a processing delay. The queries can be expensive or may not
be permitted at all for security reasons. Thus it is often required to minimize
the additional queries to the external sources.

Previous studies have mainly been focus on identifying the class of self-
maintainable views. It has been shown that only a very restricted subclass of SPJ
views is self-maintainable [11, 3, 5, 6, 10, 12]. Views involving joins, for instance,
are generally not self-maintainable in response to insertions into a component
relation, and are self-maintainable in response to deletions and modifications
only under certain conditions [3, 4].

Suppose that views are stored at sites different from where the base relations
are stored. A site where base relations are stored is called base-relation site. A
site where views are stored is called view site. A simple way to achieve self-
maintenance of views is to replicate (a subset of) the base relations at view site.
However, the cost of replicating large base relations may become prohibitive.
Moreover, the replication may not be acceptable for applications where the very
purpose of defining views is data protection, i.e. to limit the access to the entire
base relations.

Another approach is to materialize auziliary views of the base relations at
view sites [7, 10]. In [7], views are made self-maintainable by storing, at the view
sites, the results of pushing down selections and projections to the base rela-
tions. The cost of storing the results is usually lower than the cost of replicating
the base relations in their entirety. For example, consider a view defined by
Ty rg, 51,80 (OB R Wpy=s, 0, S), where r1,72, 73 are some attributes of R, s1, s2
are some attributes of S and E1, Es are selection conditions. The idea is to mate-
rialize, at view site, the auxiliary views m,, r, r;05, R and 7, 5,05,5 of the base
relations R and S. These views are smaller than the base relations. Based on the
materialized, auxiliary views, the view 7, ,; s1,5,(0E, R Xy=s, 0, S) can be
computed without access to the base relations. However, when no selections and
projections can be pushed down to the base relations, this approach degenerates
into the replication of the entire base relations.

The updates of the base relations that are relevant to a view are sometimes
known to be restricted to certain part of the base relations. For instance, in a
personnel database, it may be that only the records of the temporarily employed
or guests can be removed from the database, and only the fields of salaries are
frequently modified. It is then desirable to have some active mechanism of view
self-maintenance triggered by such expected updates.

www.manaraa.com

This paper explores an alternative approach to providing auxiliary data which
enable the self-maintenance of materialized views. The general idea of our ap-
proach is to represent the base data using tables with variables and to materialize
auxiliary views of such tables in form of conditional tables of Imielinski and Lip-
ski [8]. Modeling updates of the base data in terms of changes of the assignment
of the variables, we can compute the updated views by evaluating the conditional
tables with respect to the new assignment of the variables. It can be proven that
all views defined by relational algebra expressions taken together with the mate-
rialized conditional tables are self-maintainable (based on information about the
updates of the base data sent to the view site). This approach avoids the repli-
cation of the entire base relations and allows active self-maintenance of views
triggered by identified updates of the base relations.

This paper is organized as follows. First, we present the notion of conditional
tables introduced in [8] with extensions based on the three-valued logic. Then
we illustrate our approach using an example. In Section 4, we describe the ideas
of self-maintaining views with respect to deletions against underlying base data.
In Section 5, we extend the approach to cover the cases with respect to deletions
and insertions. In Section 6, we discuss how to handle modifications as atomic
operations. Finally, we conclude the paper with a summary and some discussion.

2 Conditional Tables

A table is a relation with constants and variables. A conditional table is an
extension of a table with one more column containing logical formulas attached
with the tuples of the relation. Table 1 shows an example of conditional tables,
where x,y,u,v,t and s are variables. The logical formulas are represented under
a column labeled con. con can be seen as a special attribute.

Definition 1. A condition is an expression built up by means of Boolean con-
nectives =, A,V and = from atoms true, false, and equality atoms of the forms
x =y and z = ¢, where z and y are variables and ¢ is a constant. x # y (x # ¢)
is the abbreviation for =(z = y) (resp. =(z = ¢)).

Definition 2. A conditional table (or c-table for short) is a pair T. = (T, ¢),
where

— T is a table,

— ¢ is a mapping over T that associates a condition ¢(t) with each tuple ¢ of
T. ¢(t) is called a local condition. A c-tuple is a tuple t of T' together with
local condition ¢(t), denoted (¢, ¢(t)).

When dependency constraints are concerned, an additional kind of condi-
tions, called global conditions, needs to be introduced, as proposed in [2]. For
simplicity, we do not consider dependency constraints and therefore ignore the
global conditions of conditional tables.

www.manaraa.com

Table 1. A conditional table (c-table)

AC con
tcr=u
scy=u
tcr=wv
scy=vw

To interpret information in a c-table is to map it to relation instances by as-
signing values to the involved variables. Previously, the interpretation has been
done based on two-valued logic. In this section, we define a three-valued inter-
pretation of c-tables.

Let V be a finite set of variables and each variable z in V have an associated
domain, denoted D(z). A wvaluation over V is a mapping v which maps each
variable in V to a value in the associated domain. Such a valuation is expressed
in form of {z1/a1,z2/as,...,x,/an}, where a1, ..., 2, is a listing of V and a; =
v(z;) € D(x;) for each i € (1,n).

We assume that there is a special value 7, called non-existing value, included
in the domain of each variable. Intuitively, the assignment of the non-existing
value to variable z means that the value of z simply does not exist. It is intro-
duced to model the updates (deletions, insertions and modifications). It is also
assumed that the domain of each attribute does not contain the non-existing
value.

The evaluation of conditions is based on the strong Kleene logic [9]. We
denote the evaluation of a condition C' with respect to a valuation v by VV(C).
With respect to valuation v, C' can be satisfied (denoted VV(C) = T, falsified
(denoted VV(C) = F) or undefined (denoted VV(C) = U). The evaluation of a
condition is defined recursively as follows:

1. true is always evaluated T and false always F.

2. For an equality atom z =y, VV(z =y) =Uif v(z) =norv(y) =n. VV(x =
y) =T if v(z) #n, v(y) #n and v(z) = v(y). Otherwise, VV(z =y) = F.

3. V¥(=p) = =V¥(p), VV(pAq) = VV(p) AVY(g) and V¥(pV q) = V¥(p) V
VV(q), where the connectives =, A and V on the right-hand sides of the above
equations are defined by the well-known truth tables of the strong Kleene
logic shown in Table 2.

We say that two conditions Cy and Cs are equivalent iff VV(Cy) = VV(Cy) for
any valuation v. In c-tables, conditions equivalent to true are simply omitted.
If all local conditions in a c-table are true, then the con column can be omitted.

Now we define the result of evaluating c-table T. = (T, ¢) with respect to
valuation v, denoted v(T.), as follows:

v(Te)={v(t)| teT,VV(é(t)) =T and v(z) #n for any = € t}, (1)

www.manaraa.com

Table 2. The truth tables of the connectives =, A and V

p-p/ NTFUVTFU
TF TTFUTTTT
FTIFFFFFTFU
UU|(UUFUUTUU

where v(#) is the result of evaluating each value in tuple ¢ with respect to v. So
v(T.) contains all such v(t) that t € T, v satisfies the local condition ¢(t) and
v(t) does not contain the non-existing value.

We call v(t) the instance of the c-tuple (¢, #(¢)) with respect to v and c-tuple
(t, #(t)) the abstraction of v(t). v(T.) is called the instance of T, with respect to
v.

Given a database I, with a number of c-tables, the instance of I. with respect
to v is defined as: v(I.) = {v(T.) | T. € I.}.

For example, the instance of the c-table shown in Figure 1 with respect to
the valuation {z/a,y/a,u/b,v/a,t/d,s/d} is the relation with one tuple (d, ¢').
Tuple (d,c') is the instance of c-tuples (¢,¢/,z = v) and (s,¢',y = v). In other
words, both c-tuples (¢,¢',xz = v) and (s, ¢,y = v) are the abstractions of tuple
(d,c).

The set of relation instances represented by c-table T. = (T, ¢) is defined as
follows:

rep(T.) = {v(T.) | for any valuation v}. (2)

For a database I. = (T4, ...,T,), rep(I.) = rep(Ty) X ... x rep(Ty).

For two c-tables T and T», they are said to be rep-equivalent if rep(Ty) =
rep(T>). Given a c-table T, if we (a) replace each of the conditions in T, by an
equivalent one, (b) delete all ¢ € T, such that ¢(¢) is equivalent to false, and (c)
replace some ty, ..., t; € T, such that t1[X] = ... = t;[X], where X is the set of
attributes in 7., by a single tuple ¢ such that ¢[X] = ;[X] and ¢(t) = VE_, ¢(t;),
then the resulting c-table will be rep-equivalent to T, [8]. If the resulting c-table
does not contain different c-tuples agreeing on all the attributes of T,, then it
is said to be normalized [8]. The result of normalizing a c-table T, is denoted
by (T.)°. Basically, the normalization process eliminates redundant c-tuples and
unite c-tuples without loss of useful information.

Suppose that c-tables T and W are given, which are defined on sets X and
Z of attributes, respectively. The definitions of some relational operators on
c-tables are as follows (see [8] for the definitions of the other operators):

— The projection of T on a set Y of attributes (Y C X) is defined by
7y (T) = {t[Y U {con}] | t € T}".
— The natural join of T and W is defined by
THXW={tXw|tecTAweW}°,

www.manaraa.com

where ¢ X w is the c-tuple on X U Z such that

t(4) ifAe X
(tN“’)(A):{w(A) ifAeZ-X

(t X w)(con) = t(con) A w(con) A /\ (t(A) = w(A)).
Aexnz

— Given selection condition E, the selection of T based on E is defined by
op(T) = {or(t) |t € T},
where og(t) is the c-tuple on X with
op(t)[X] = #[X],

og(t)(con) = t(con) N E(t).
E(t) is the result of substituting t(A) for A in E, for every A € X.

The above definitions of the operations on a single c-table generalize straight-
forward to the definitions of the operations on a set of c-tables.

Let q(I.) be a view of I. defined by relational algebra expression ¢. It has
been proven (Theorem 7.1 in [8]) that

v(q(I.)) = q(v(l.)) (3)

holds for any valuation v of the variables in I.. Based on (3), it can be proved that
the answers to all relational queries on a database of c-tables can be represented
using c-tables [8]. Note that although the non-existing value is not considered in
[8], the above result still applies because it does not affect the definitions of the
relational operators.

Let C be a binary relation on the set {T, F,U} satisfying

UCT,UCF. (4)

C stands for “C or =”. The ordering C is reflexive and transitive. The structure
({T,F,U},C) is called the approzimation lattice [1]. We extend the relation C
to define an ordering over the domain of a variable. For any variable z, C is a
binary relation over D(z) such that for any value a,

nCa. (5)

1 C a stands for “n C a and 5 # a”. Further, we extend the relation C to define
the degree-of-definedness ordering between valuations. For any valuations v and
v/,

v C V' iff v(z) C v'(2) for each variable z. (6)

v C v/ means that v C v/ and v # v'. v C v’/ implies that whenever v’ and v
assign different values to the same variable, it must be that v’ assigns 5 to the
variable.

Ol LAC U Zyl_ﬂbl

www.manaraa.com

A propositional language is said to be persistent if for any valuations v and
v/, and formula C in the language, if v C v/, then V¥ (C) C V¥ (C). The strong
Kleene logic is the strongest extension of the classical two-valued logic satisfying
the persistence condition [9]. Thus, for any valuations v and v’, and condition
C,if v C v/, then VY(C) C VY (C). The following proposition follows directly
from the property.

Proposition 3. For any valuations v and v', and c-table T, if v C v', then
v(T.) Cv'(Te).

3 An Illustrative Example

In this section, we illustrate our approach by example. We discuss only self-
maintenance of views in response to deletions and insertions against the base
relations. Consider database (T1,T5>) at base-relation site and materialized view
7g(T1 Mp=c T») at view site, as shown in Table 3.

To make the view self-maintainable with respect to the deletions against the
base relations, we carry out the following steps:

1. At the base-relation site, we generate tables by replacing the values of certain
attributes in the base relations using variables, namely those attributes that
participate in the definition of the view. For each base relation, it is only
necessary to identify the values of one such a attribute. The result of this
process, (Ty,Ty), is called a D-version of database (Ty,T>) and shown in
Table 4. The values of attribute B, for instance, are identified by three vari-
ables y1,y- and y3, respectively. Let the values of the variables with respect
to T and T be kept in a valuation v = {y1/b,y2/b,ys/e, z1/a, z2/e}.

2. At the view site, we store an additional relation called the conditioned version
of the materialized view (or the conditioned view for short), shown in Table 5.
The conditioned view is a subset of the C-table (T Mp=c T3) shown in
Table 6. The c-tables are normalized. The relation between the materialized
view and the conditioned view is that the conditioned view contains and only
contains the abstractions of all the tuples in the materialized view; the tuples
in the materialized view are instances of the c-tuples in the conditioned view
with respect to the valuation v. For instance, the tuple (e) in the materialized
view is the instance of c-tuple (ys, (y3 = z1) V (y3 = 22)) with respect to the
valuation v.

Note that if we store the D-version of the database and the valuation v, the
database can be computed by 77 = v(T}) and T> = v(T¥). Similarly, if we store
the conditioned view and the valuation v, the current state of the view can be
computed by evaluating the conditioned view using the valuation v. Thus the
new tables at the base-relation and the view sites enable us to compute the base
relations and the view whenever needed.

Now let us see how the materialized view can be maintained with respect
to deletions against the base relations. Suppose that the tuple (d, e) in the base

www.manaraa.com

relation T is deleted. The purpose of introducing variables to the base relations
is to make it possible to model each deletion operation against the base relations
as a change of the valuation of the variables. The deletion of tuple (d,) against
Ty can be captured as the change of the value for variable y3 in 7} to the non-
existing value. Thus a change of the valuation of the variables y3 to the non-
existing value is made. The new valuation is vi = {y1/b,y2/b,ys/n, z1/a, 22/€}.

Suppose that we send the information about the update against the base
relations to the view site by sending the new valuation (or the difference between
the old and the new ones if the old valuation is already stored at the view
site). Based on the relation between the materialized view and the conditioned
view, it is easy to see that the tuples to be deleted from the materialized view
can be obtained by evaluating the conditioned view with respect to the new
valuation vy. Since y3 is assigned the non-existing value, the condition (y; =
z1) V (y3 = z2) can no longer be satisfied. The tuple (e) should be deleted from
the materialized view. The evaluation can be done without additional queries
over the base relations. Correspondingly, the c-tuple (ys3, (y3 = 21) V (y3 = 22))
is deleted from the conditioned view. This way, the view taken together with the
conditioned view is self-maintained with respect to the deletion.

Table 3. Base data and view Table 4. D-version
T
AlB T2 Tlv Tv
CD 7TB(T1 NB:C TQ) AB 2
ab CD
ad B a y1
cb 21 d
d e €a © ¢ Y2 Zo Q
VieW d Y3 2
Base Relations

Table 5. Conditioned view Table 6. 5 (T} Xp—c T;)
B con B con
ys (y3 = 21) V (y3 = 22) y1 (Y1 =21)V (y1 = 22)
Y2 (Y2 = 21) V (y2 = 22)
ys (ys = 21) V (y3 = 2»)

Now we consider how the view can be made self-maintainable with respect
to insertions against the base relations. Suppose that insertions are expected
against both of the base relations T and T5. We carry out the following steps
in addition to the previous ones:

www.manaraa.com

3 At the base-relation site, we extend the D-version (T7,T¥) of the database
by adding free tuples containing only variables. Let the free tuples be t} =
(n1,m2) and t§ = (n3,n4). The resulting database, (T U {t¥}, T3 U {t3})
(shown in Table 7), is called the DI-version of (T}, T5). Let the values of the
variables with respect to 77 and T3 still be kept in the valuation v.

4 At the view site, in addition to the conditioned view, we store another re-
lation, called the insert set of the view. The insert set, shown in Table 8,
is defined as the difference between w((T¢ U {t{}) Xp=c (T3 U {t3})) and
7p(TY Wp=c TY), which is equivalent to 7 ({t¥} WNp_c T¢ UTY Xp_c
{ts} U{t} Xp=c {t3}).

Suppose that tuple (b, a) is inserted into Ty. The purpose of defining the DI-
version of the database is to introduce variables in such a way that it is possible
to model insertions against the base relations in terms of changes of the valuation
of the variables in the free tuples?. The insertion of tuple (b,a) into T} can be
modeled as assigning b to variable ny, a to variable n, and 1 to n3g and ny4, giving
rise to the valuation v; = {y1/b,y2/b,ys/e, z1/a, za/e,n1 /b, na/a,ns/n,na/n}.

Suppose that v; is sent to the view site as information about the update
against the base relation. Now the set of new tuples to be inserted into the
materialized view can be computed as the instance of the insert set with respect
to the valuation v;. The outcome of the computation is the tuple (a), which is
the instance of the c-tuple (na,ny = 21) in the insert set with respect to v U v;.
The updated view is shown in Table 9.

Corresponding to a tuple inserted into a base relation, a new tuple needs to
be inserted into the DI-version of the base relation. According to the definition
of a DI-version of the database, all the values of attribute B in T} are to be
identified by variables. Thus a new variable needs to be introduced to identify
the value of attribute B (which is a) in the tuple (b, a) inserted into T3 . Let us
assume that ys be the new variable. The new tuple to be inserted into 7} is
(b,y4). The information about the mapping from the value of attribute B in the
inserted tuple to variable y4 should also be sent to the view site.

The conditioned view and the insert set can be incrementally self-maintained
in response to both deletions and insertions against the base relations. We have
already shown how the conditioned view is maintained with respect to deletions
against the base relations. In response to insertions into the base relations, new
c-tuples have to be inserted into the conditioned view when new tuples are
inserted into the materialized view. The insertion of (a) into the materialized
view implies that (ne,na = z1) should be inserted into the conditioned view.
Note that ns is in fact a place holder for the new variable y,. The new c-tuple
inserted into the conditioned view should be (y4,ys = 21). The resulting relations
are shown in Table 9. We leave the detail of updating the insert set to Section 5.
Here we only mention the results. In response to the deletion of tuple (d, e) from
T;, the tuple (ys,ys = n3) should be deleted from the insert set. The updated

2 Deletions can be modeled as before; in addition, all the variables in the free tuples
are given the value 7.

www.manaraa.com

insert set is shown in Table 10. In response to an insertion, new tuples should be
inserted into the insert set. For the insertion of (b, a) into T}, tuple (y4,ys = ng3)
is inserted into the insert set. The updated insert set is shown in Table 11.

Table 7. DI-version Table 8. The insert set
(Ty u{ty}, Ty U {t3}) of (T1,T>»)
B con
Tlv U {t’f} v v na Ny = 21
A B TQU{Z} No Mo = 29
C D _
a Y > d N2 No = N3
c Y2 zl a Y1 Y1 =n3
d ys [Y2 Y2 = ng
v ty||ns N4 _
ti|n1 ne Y3 Ys = ns

Table 9. The updated view and its conditioned version

The updated view Conditioned version of the updated view

B B con
e Ys (ys = 21) V (y3 = 22)
a Y4 Ys = 21

4 Self-Maintenance of Views w.r.t. Deletions

In this section, we describe the self-maintenance of views in response to deletions
against the base relations in more rigorous terms. We consider views defined by
relational algebra expressions in this and the following sections.

Let us review some notions adopted from [5]. A view can be defined using a
relational expression, which can be transformed into an equivalent select-from-
where expression. An attribute A is said to be distinguished in a view defined
by a select-from-where expression if attribute A appears in the set of attributes
specified by the select clause. An attribute A is said to be exposed in a view
defined by a select-from-where expression if A is used in the selection condition
specified by the where clause. The union of the distinguished and exposed at-
tributes is called the extended attribute set of the view. Essentially, only changes
of the attributes in the extended attribute set of a view possibly affect the state
of the view. For example, consider relation R(A4, B,C) and R'(C) and a view
defined by m4(R X R'). Attributes A and C are in the extended attribute set of

www.manaraa.com

Table 10. The updated insert set Table 11. The updated insert set

in response to deletion of (d,e) in response to insertion of (b, a)
from Ty into T}
B con B con
N2 N2 = 21 N2 N2 = 21
na N2 = 22 na N2 = 22
na N2 =ng3 N2 N2 = N3
Y1 Y1 =n3 Y1 Y1 =n3
Y2 Y2 = ng Y2 Y2 = ng
Y3 Y3 = ns
Y4 Yqa = N3

the view; attribute A is distinguished, while C' is exposed in the join. Attribute
B is said to be irrelevant to the view, as it is not mentioned at all in the view
definition.

For each base relation T € I defined on a set X of attributes and a view ¢
defined over I, if some tuples are expected to be deleted from T, then we choose
one (and at most one) ezposed attribute A € X of the view, replace the values
of A in the relation T' with distinct variables and put on the side the valuation
of the variables. The resulting set of tables after variables are introduced in this
way is called a D-version of the database I with respect to ¢q. For a D-version of
the given database, let v be the valuation that maps the introduced variables to
the replaced values. Then v(I;) = I and v(q(I4)) = q(v(I4)) = q(I). v is called
the valuation of the variables in I; with respect to I.

Consider the database (Ty,T>) and the view wg(Ty Wp—¢ T) shown in
Table 3. Attributes B and C' are exposed in the view. To generate a D-version of
the database, we introduce variables to replace values of the exposed attribute
B in Ty and C in T5. The resulting tables are T} and T3 shown in Table 4. The
valuation of the variables is defined in v.

As mentioned earlier, the purpose of generating a D-version of a database
with respect to a view is to make it possible to model each deletion operation
against the base relations as a change of the valuation of the variables.

Lemmad4. Let I; be a D-version of database I with respect to a view of I and
the valuation of the variables in I; with respect to I be v. For the deletion of a
tuple t from I, there is a valuation v' such that v'(I;) = I — {t}, and v' C v.

Proof. Let t be any tuple in a base relation in I and ¢. be the corresponding
c-tuple in I3. Then t; must be the result of replacing the value of an exposed
attribute in ¢ with a variable z. Let v’ be such a valuation that v/(z) = n and
for all other variables y, v'(y) = v(y). Then v'(I;) = I — {t} and v' C v. This
concludes the proof.

Definition 5. Let I; be a D-version of database I with respect to view ¢ and
v denote the valuation of the variables in I; with respect to I. The conditioned

www.manaraa.com

version of view ¢(I) with respect to I, denoted T, is defined as:

Ty =A{(t, ¢(1)) | (t, (1)) € q(1a), V¥ (4(t)) = T and v(z) # 1 for any z € t}.

By definition, Ty C q(I4) and v(T4) = v(g(I4)). Since v is the valuation of the
variables in I; with respect to I, ¢(I) = v(q(I4)) must hold. Because v(Ty) =
v(q(14)), it must be that ¢(I) = v(Ty). That is to say, the view ¢(I) is the
instance of the conditioned version Ty with respect to v.

Before stating the theorem about the self-maintainability of the views in
response to deletions, we prove another lemma.

Lemma 6. Let I; be a D-version of database I with respect to view q, Ty be the
conditioned version of the view q(I) with respect to I, and the valuation of the
variables in I, with respect to I be v, i.e. v(I;) = I. Then

v (Tq) = v'(q(1a)) (7)
holds for any valuation v' of the variables in Iy such that v' C v.

Proof. By definition of Ty, Ty C q(I). For any valuation v' C v, according to
Proposition 3, v'(q(I4) — Tq) C v(q(Is) — T4) holds. Again, by definition of T},
v(Ts) = v(q(la)), i.e. v(q(Iq) — T4) = 0. On the other hand, since Ty C ¢(14), it
must be that § C v'(q(I4) —T4). That is, § C v'(q(La) —Ta) C v(g(1q) —Ta) = 0.
It follows immediately that v'(q(I4) —Ty4) = 0. Consequently, v'(¢(I4)) = v'(T4U
(q(Iq) — Tq)) = v'(Tq) Uv'(q(14) — Ta) = v'(T4). This concludes the proof.

Now we are ready to prove that in response to deletions of the base relations,
materialized views defined by relational algebra expressions are self-maintainable
by means of the conditioned versions of the views. Basically, the updated state
of a view can be computed by evaluating the conditioned version of the view.

Theorem 7. Let I be a D-version of database I in response to a view q, v be
the valuation of the variables in I; with respect to I, and T, be the conditioned
version of the view with respect to Iy. The view, taken together with Ty, is self-
maintainable in response to deletions against I.

Proof. First, we prove that for the deletion of a tuple ¢ from I, ¢(I—{t}) = v'(T4)
for some valuation v/ C v. According to Lemma 4, there must be some valuation
v’ of the variables in I, such that v'(I;) = I — {t} and v’ C v. According to (3),
it follows that v'(q(l4)) = q(v'(14)) = q(I — {t}). That is to say, the updated
view g(I — {t}) is equivalent to v'(g(I)). Let Ty be the conditioned version of
the view with respect to Ij. According to Lemma 6, v'(q(I4)) = v'(Ty). Thus
we have v/(Ty) = q(I — {t}). Note that ¢(I — {t}) is the updated state of the
view. Since Ty is materialized, according to the above theorem, we can compute
the update view without access to the base relations. The conditioned version
T, can be updated by deleting all the c-tuples where the local conditions are
not satisfied by v'. We can conclude that the view, taken together with the
conditioned version Ty of the view with respect to Iy, is self-maintainable in
response to deletions against I. This concludes the proof.

www.manaraa.com

Let us review relations T;, T» and the view defied by ng(Ty Xp=c T5)
shown in Table 3. Suppose that tuple (c,b) is deleted from 7). This deletion
can be modeled as the modification of the valuation of y, from b (accord-
ing to v) to the non-existing value 7. The new valuation of the variables is
va = {y1/b,y2/n,y3/e, z1/b, z2/e}. The result of evaluating the c-table shown
in Table 5 using v, is the updated state of the view. In this case, the updated
state of the view is the same as the old state of the view. So the deletion has no
impact on the state of the view.

5 Self-Maintenance of Views w.r.t. Deletions and
Insertions

In this section, we describe the self-maintenance of views defined by relational
algebra expressions in response to deletions and insertions against the base re-
lations.

For a database I and view g on I, if both deletions and insertions are ex-
pected, then we first generate a D-version of I with respect to view ¢, denoted 1.
Note that there is a one-to-one mapping from the relations in I to the relations
in I4. For each relation T in I, if some tuples are expected to be inserted, then
we add a free tuple with only distinct variables to the corresponding relation
of T in I;. The variables in the free tuple are distinct from all those already
used. The resulting database Iy; is called the DI-version of the database I with
respect to q.

The purpose of defining the DI-version of the database is to introduce vari-
ables in such a way that it is possible to model not only deletions, but also
insertions against the base relations as changes of the valuation of the variables.
Deletions can be modeled by changing the assignments of some variables to the
non-existing value, as indicated in the proof of Lemma 4. Insertions can be mod-
eled by assigning values to the variables in the free tuples. Recall the example
database (T, T>) shown in Table 3 and the DI-version of the database shown in
Table 7. The insertion of tuple (b, a) into T} can be modeled by assigning b to
variable ny and a to variable ny. Thus we have the following lemma. The proof
is trivial and is omitted.

Lemma 8. Let I; be a D-version of database I with respect to a view of I and I4;
be the corresponding DI-version of database I. Let the valuation of the variables
in Iy with respect to I be v. For the insertion of a tuple t into I, there is a
valuation v; such that v;(I3;) = I U {t}, and v;(Iq) = v(I4) = I.

Now we define the notion of insert set.
Definition 9. Let I; be a D-version of database I with respect to view ¢ and

I4; be the DI-version of database I with respect to the same view. q(I4;) — q(14)
is called the insert set of the view.

www.manaraa.com

The insert set of the view is the auxiliary data to be materialized in order to
self-maintain the view.

Now we shall prove that a view is self-maintainable in response to deletions
and insertions based on the conditioned version of the view and the insert set
of the view. The assumption is that some information about the updates of the
data at the base-relation site is sent to the view site.

Theorem 10. A view q of a database I, taken together with the conditioned
version of the view and the insert set of the view, is self-maintainable in response
to deletions and insertions against I.

Proof. We need to prove that 1) the view can be self-maintained in response
to deletions and insertions against the base relations based on the conditioned
version of the view and the insert set of the view, and 2) both the conditioned
version of the view and the insert set of the view are self-maintainable.

We start with 1). For deletions, the proof is similar to that of Theorem 7. The
updated state of the view can be computed by an evaluation of the conditioned
version of the view. Now we consider insertions. Let I be a D-version of I with
respect to the view ¢ and I; be a DI-version of I. Then ¢(I4;) — q(l4) is the
insert set of the view. Suppose that ¢ is inserted into I. According to Lemma 8,
there is a valuation v; such that v;(I4;) = I U{t}, and v;(I4) = v(I4) = I. Thus

vi(q(lai) — q(1a)) = q(vi(lai)) — q(vi(la)) = q(T U {t}) — q(I).

That is to say, the set of tuples to be inserted into the view is the result of
evaluating the insert set by v;. Both the insert set and the valuation v; are
available independent of the base relations. We can conclude that the view is
self-maintainable in response to insertions against the base relations.

Now we consider 2). In the previous section, we have described how the
conditioned view can be maintained in response to deletions against the base
relations. In response to insertions, new c-tuples may be inserted into the condi-
tioned view. Let Iy denote the old D-version, I4; denote the old DI-version and
I'; the new D-version after the insertions. I} can be obtained by first replacing
the free tuples in I;; with the inserted tuples, and then replacing the values in
the inserted tuples with new variables (in order to satisfy the requirement for
the D-version). Let ry be such a mapping from the variables in the free tuples
in I4; to the new variables in I, that I}, = r1(I4;) and rq(Iq) = I4. Assume that
r; is sent to the view site as information about the insertions into the base rela-
tions. For a view ¢, ¢(I}}) — ¢(I4) = q(r1(14;)) — q(La) = r1(q(La;) — q(1q)), where
q(I4;) — q(I) is the insert set before updates. Let T.; be the set of c-tuples in
the old insert set where the associated local conditions are satisfied by v;. Then
according to the definition of the conditioned view, the set of c-tuples to be
inserted into the conditioned view is ry(T;), which can be computed based on
the available information at the view site.

Next we show how to maintain the insert set in response to deletions and
insertions against the base relations. For simplicity, we consider only a database
with two relations 77 and T», and a view 7x (65 (T1 X T)), where X is a subset

www.manaraa.com

of attributes of T} and T5, and FE is a selection condition. The cases with multiple
relations can be proved easily by induction. Let AT} and AT, denote the sets of
tuples inserted into T and Ts. Assume that (T, T¥) is a D-version of (T3,7%).
Let ro denote the mapping from the values in AT} and AT, to the variables in
the updated D-version. Assume that ry, ATy and AT, are sent to the view site
as the information about the insertions against the base relations. The old insert
set before the insertions is:

Sota = mx (0p((T7 U {t7}) W (T U {t3})) — mx (om(TY M T3))) =
mx (op({t7} XT3 UTY WAy} U{#7} X {t5})).

The new insert set after the insertions is:

Snew = mx (05 ((TF Urs(ATy) U {t7}) M (T3 Urs(ATs) U {t5})) —
mx (or((T Urs(ATh)) M (T3 Urs (ATh)))) =
mx (op({tT} X (T3 Ura(ATy)) U (T Urs(ATh)) M {5} U {t1} X {23}))-

Then the set of new tuples to be inserted into the insert set, which is the differ-
ence between the new insert set and the old insert set, is:

Snew — Sotd = 7x (05 ({t]} X ra(ATy) Urs(ATY) X {t5})).

Since tj and tj are available at the view site, the above set can be computed
without access to the base relations. When deletions against the base relations
are considered, it can be derived that the above set is precisely the set of tuples to
be deleted from the insert set. That is to say, the insert set can be self-maintained
in response to deletions and insertions. This concludes the proof of the theorem.

6 Modifications as Atomic Operations

If modifications are handled as deletions followed by insertions, then Theorem 10
is sufficient to guarantee that the views can be self-maintained in response to
modifications against the base data. In this section, we discuss hoe to handle
modifications as atomic operations.

Suppose that we are given a database I of base relations. For each base
relation, if there are some values that are expected to be modified, then we
replace the values with distinct variables and put on the side the valuation of
the variables. Recall that only modifications of the values of the attributes in
the attribute set of a view are relevant to the view. So we only need to introduce
variables to identify values of the attributes in the extended attribute set. Let
I,,, denote the resulting set of tables after variables are introduced as described
above. I, is called a M-version of the database I with respect to the view. Let
v denote the valuation of the variables in I,, with respect to I. Then I is the
instance of I,,, with respect to v, i.e. v(I,,) = I.

The M-version of the example database (77, T») with respect to view 75 (T1 Xp—¢
T5), shown in Figure 3, coincides with the D-version of the database with respect

www.manaraa.com

to the view. Generally, rep(I4) C rep(I,,). Thus the M-version of a database can
replace the D-version of the database.

The purpose of generating the M-version of a database with respect to a
view is to make it possible to model each modification operation against the
base relations as a change of the valuation of the variables.

Lemmall. Let I,, be a M-version of database I with respect to a view of I and
the valuation of the variables in I, with respect to I be v. For the modification
of a tuplet in I tot', there is a valuation v' such that v'(I,,) = (I — {t}) U{t'}.

Proof. Let t. be the corresponding c-tuple to ¢ in I,,,. Then t. must be the result
of replacing the values of attributes expected to be modified in ¢ with variables.
Let v' be such a valuation that v'(¢.) = ' and for the any other c-tuple ¢/, € T,,,,
v/(t,) = v(t.). Then it is easy to see that v'(I,,,) = (I — {t}) U {t'}.

To model insertions against the base relations, we can add free tuples to I,
and generate a MI-version of the database.

As before, we could define a subset T, of q(I,,) as the conditioned version of
view g(I) with respect to I by T = {(t,6(1))) | (£, (1) € a(Im), V¥ (8(1)) =
T and v(z) # nfor any z € t}. Now the question is whether we can prove
something similar to Theorem 7, namely that a view ¢, taken together with the
conditioned version T,,, is self-maintainable in response to modifications against
I. Unfortunately, it is not possible because, different from Lemma 4, Lemma 11
cannot guarantee v/ C v, and consequently not v/(T,,) = v'(¢(In)) either.
Thus instead of materializing the conditioned version T, of the view, we have
to materialize ¢(I,,,) for the self-maintenance of the view. For instance, consider
the modification of tuple (e,a) in T (in the example database) to tuple (b, a).
This amounts to change the valuation of variable z from e to b. Evaluating the
conditioned version of the view using the new valuation of the variables leads
to an empty state, while the state of the updated view contains one tuple (b).
On the other hand, evaluating the auxiliary view ng(Ty Xp=c Ty) shown in
Table 6 results exactly in the state of the updated view.

We prove the self-maintenance of a view taken together with the M-version.
Due to space limit, we consider only modifications.

Theorem 12. Let I, be a M-version of database I with respect to a view q.
The view, taken together with the auxiliary view q(I), is self-maintainable in
response to modifications against I.

Proof. Consider the modification of a tuple ¢ from some base relation in I to
tuple ¢'. According to Lemma 11, there must be some valuation v’ of the variables
in I, such that

v!(Im) = (I = {t}) u{t'}. (8)

It follows from (8) and the property (3) that

v!(g(Tm)) = a¢(v'(Im)) = a((T = {t}) U {t'}). (9)

www.manaraa.com

That is to say, the updated view q((I — {t}) U {t'}) is equivalent to v'(¢(I)).
Since ¢(I,) is materialized, we can compute the updated view without access to
the base relations. The auxiliary view definition remains unchanged in response
to the modification. This way, we achieve the goal of making the view self-
maintainable in response to modifications of the identified values.

7 Conclusion and Discussion

We have presented a new approach to maintaining materialized views without
accessing the underlying base relations. The basic idea is to to represent the
base data using tables with variables and to materialize auxiliary data in form
of conditional tables.

In order to make a materialized view self-maintainable in response to dele-
tions against the base data, a D-version of the base data is generated at the
base-relation site and a conditioned version of the view (which is a subset of the
view over the D-version) is materialized at the view site. A deletion against the
base data can be modeled as changes of the assignment to the variables in the
D-version. The updated view can be computed by evaluating the conditioned
version of the view with respect to the new assignment of the variables.

In order to make a materialized view self-maintainable in response to dele-
tions and insertions against the base data, a DI-version of the base data is gen-
erated at the base-relation site. An insert set is materialized at the view site, in
addition to the conditioned version of the view. An insertion into the base data
can be modeled as changes of the assignment to the variables in the DI-version.
The set of new tuples to be inserted into the materialized view can be computed
by evaluating the insert set with respect to the new assignment of the variables.

Modifications against the base data can either be handled as deletions fol-
lowed by insertions, or as atomic operations. In the latter case, a M-version of the
base data is generated at the base-relation site and an auxiliary view of the M-
version is materialized at the view site. A modification against the base data can
be modeled as changes of the assignment to the variables in the M-version. The
updated view can be computed by evaluating the auxiliary view with respect to
the new assignment of the variables. We have also shown that the auxiliary data
materialized at the view site are self-maintainable with respect to the updates
against the base data.

This approach has two main advantages over the previous ones. First of all,
it avoids the replication of the entire base relations. Secondly, It allows active
self-maintenance of views triggered by expected updates of the base relations
(by means of the introduction of variables).

Those advantages come at the price of storing and maintaining auxiliary
data at the view site. The size of the auxiliary data varies with the complexity
of the materialized view. The size of the conditioned view is linear to the size of
the materialized view. Thus materializing the conditioned view does not lead to
significant increase of the space complexity. When a view is defined upon a join
of m base relations with the maximal size of n tuples, the size of the c-tables

www.manaraa.com

representing the insert set and the auxiliary view ¢(I,,) (where I, is the M-
version of the database) can be exponential to the number of joined base relations
in the materialized view. That implies, this approach is less expensive when
handling deletions against the base data, and handling modifications as atomic
operations using the current approach may need more space for materializing
the auxiliary data than handling them as deletions followed by insertions.

Acknowledgments Thanks are due to Prof. Udo Lipeck and the anonymous
referees for many helpful comments.

References

1.

2.

11.

12.

S. Blamey. Partial logic. In Handbook of Philosophical Logic, volume III, pages
1-70. D. Reidel, 1986.
G. Grahne. The problem of incomplete information in relational databases.
Springer-Verlag, 1991.

. A. Gupta, H. V. Jagadish, and I.S. Mumick. Data integration using self-

maintainable views. Technical Report 223880-941101-32, AT&T Bell Laboratories,
November 1994.

A. Gupta, H.V. Jagadish, and I.S. Mumick. Data integration using self-
maintainable views. In P. Apers, M. Bouzeghoub, and G. Gardarin, editors, Ad-
vances in Database Technology — EDBT’96, 5th International Conference on Ez-
tending Database Technology, LNCS 1057, pages 140-144, Berlin, 1996. Springer-
Verlag.

. Ahishs Gupta and Inderpal Singh Mumick. Maintenance of materialized views:

Problems, techniques, and applications. Data Engineering, 18(2):3-18, June 1995.
Ashish Gupta, Inderpal Singh Mumick, and V.S. Subrahmanian. Maintaining
views incrementally. In Peter Buneman and Jajodia Sushil, editors, Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data,
number 2 in SIGMOD Record, pages 157-166, New York, 1993. ACM Press.

R. Hull and G. Zhou. A framework of supporting data integration using the mate-
rialized and virtual approaches. In H.V. Jagadish, T.H. Merrett, and I.S. Mumick,
editors, Proceedings of the 1996 ACM SIGMOD International Conference on Man-
agement of Data, Montreal, June 4-6, 1996, number 2 in SIGMOD Record, pages
481-492, New York, June 1996. ACM Press.

Tomasz Imielinski and Witold Jr. Lipski. Incomplete information in relational
databases. Journal of the ACM, 31(4):761-791, October 1984.

S. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton, 1952.

. D. Quass, A. Gupta, I.S. Mumick, and J. Widom. Making views self-

maintainable for data warehousing. In Fourth International Conference
on Parallel and Distributed Information Systems, Dec. 18-20, 1996, Mi-
ami Beach, pages 158-169, Briissel, 1996. IEEE Computer Society Press.
http://www.research.att.com/ mumick/projects/matViews.html.

F. W. Tompa and J. A. Blakeley. Maintaining materialized views without access-
ing base data. Information Systems, 13(4):393-406, 1988.

Jennifer Widom. Research problems in data warehousing. In N. Pissinou,
A. Silberschatz, E. K. Park, and K. Makki, editors, Proc. of the 4th Int’l Confer-
ence on Information and Knowledge Management (CIKM’95). ACM Press, Novem-
ber 1995. http://pub-db.stanford.edu/publist.html.

www.manaraa.com

